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Abstract
A special set of N-coupled nonlinear Schrödinger equations which consists
of 2N interaction types each of which is characterized by a specific array of
interaction parameters is presented. It is shown that every Lamé function
of order n � N is a solution for one or more components for one or more
interaction types of this special set. Simple rules that relate interaction and
solution types and interesting features of these relationships are presented.

PACS numbers: 05.45.Yv, 02.30.Jr, 02.30.Ik

1. Introduction

Coupled nonlinear Schrödinger (CNLS) equations involving N components, because of their
importance in many physical and mathematical problems, have been studied extensively for
many years [1]. The complex amplitude φm(z, t) of the mth component as a function of
position z and time t is assumed to satisfy the following N CNLS equations:

iφmz + εmφmtt + κmφm +


 N∑
j=1

λmj |φj |2

φm = 0 m = 1, . . . , N (1)

where εm, κm and λmj are real parameters characteristic of the medium and interaction, and
where the subscripts in z and t denote derivatives with respect to z and t, and the subscript m
is for different components.

Soliton [1–3] and solitary-wave solutions [3–5], Painlevé analysis and integrability [6],
of CNLS equations have been presented for special sets of parameters εm, κm and λmj . In
particular, Lakshmanan and his collaborators [6] have identified a specific set of parameters
that possess the Painlevé property, where the set of interaction parameters λmj can consist of a
specific mixture of negative as well as positive real constants of equal magnitude. They have
also obtained soliton solutions for N = 2 and 3 for those ‘mixed’ cases in addition to the
bright and dark soliton solutions.
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In this paper, we show that there is a special set that consists of 2N specific arrays of
interaction parameters for which the N CNLS equations possess special analytic solutions. In
these analytic solutions, the N components of the CNLS equations are expressed in terms of
N Lamé functions [7] and every Lamé functions of order n � N is a solution for one or more
components for one or more interaction types of this special set. Explicit solutions for various
specific cases of interaction parameters for n = N = 1–4 are presented. A collection of N Lamé
functions that can serve as an analytic solution for the N components of these CNLS equations
will be referred to as a combination. In this paper, we present simple rules that (A) identify a
given combination to be a solution to one or more specific interaction types and (B) give all
the possible combinations as solutions of a specific interaction type. These 2N specific sets of
CNLS equations that have these Lamé functions as special solutions will be called the L-set.
It is significant to note that the L-set we found coincides with the set of CNLS equations that
pass the Painlevé test identified by Radhakrishnan et al [6]. Potentially wide ranging physical
applications of our results are mentioned in the summary.

2. Special analytic solutions

The special analytic solutions we shall present apply to specific parameters appearing in the N
CNLS equations (1). We assume that the εm in equation (1) all have the same magnitude but
possibly different signs, and we normalize them to be equal to +1 or −1. We also assume that
the λmj all have equal magnitude but possibly different signs, and we also normalize them to
be equal to +1 or −1. In most physical applications, the N ×N matrix for λmj is symmetric,
i.e. λmj = λjm, and this is the case we shall study. We first search for the stationary-wave
solution of the form

φm(z, t) = ψm(t) exp(iωz) (2)

where ω is a real constant and ψm(t) are real functions of t only. Although ω can depend
on m and thus should be written as ωm for stationary wave, for the purpose of constructing a
propagating-wave solution from the stationary-wave solution described below, ω is assumed
to be independent of m. We consider the following N equations for ψm(t), which may be
referred to as the ‘dynamical’ CNLS equations

ψmtt + cmψm +


 N∑
j=1

βjψ
2
j


ψm = 0 m = 1, . . . , N (3)

where βj = +1 or −1, to come from subsets of equation (1) given by

iφmz ± βmφmtt + κmφm ±

 N∑
j=1

βmβj |φj |2

 φm = 0 m = 1, . . . , N (4)

where

cm = ±βm(κm − ω) (5)

and all quantities in equation (3) are assumed real. To eliminate the permutation symmetry,
we arrange equation (3) such that

c1 � c2 � · · · � cN (6)

so that only one of the two choices (the upper or lower sign) in equations (4) and (5) corresponds
to the equations of motions for equation (3). The travelling waves, if required, can be
constructed by substituting the solutionsψm from equation (3) into equation (2), and replacing
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φm(z, t) by φm(z, t − z/v) exp{i[t − z/(2v)]/(2v)}, where v is the common velocity of the
waves.

We now characterize the interaction parameters of equation (4) by the array
(β1, β2, . . . , βN ), where βj = +1 or −1, and refer to each of the 2N arrays as an interaction
type. Note that the 2N interaction types constitute only a subset of equation (1) for symmetric
λmn that can take on values +1 or −1, because the symmetric λmn are now restricted to be
those given by λmn = βmβn (or −βmβn). As we shall see, however, this is an interesting and
important subset which we shall refer to as the L-set. Our analytic and numerical computations
suggest that this special set of CNLS equations represented by equation (4) possesses special
analytic solutions for φm(z, t) that can be expressed in terms of Lamé functions of order
n � N . Our results also suggest that any N-combination of Lamé functions of order n � N is
a solution of one or more of the interaction types belonging to the L-set, and we have found
a simple rule that identifies a combination as solutions of certain interaction types and vice
versa.

3. Combinations for given interactions

Lamé equation of order n can be written in the form [7]

d2f/dτ 2 + [h− n(n + 1)k2 sn2(τ, k)]f = 0. (7)

We shall use only the polynomial solutions of the Lamé equation and refer to them as Lamé
functions, and we shall number the 2n + 1 Lamé functions of order n, f (n)1 , f

(n)
2 , . . . , f

(n)
2n+1,

in the order of numbering their corresponding eigenvalues h(n)m arranged in descending order
h
(n)

1 > h
(n)

2 > · · · > h
(n)

2n+1. Lamé functions of order n for n = 1–5 and their corresponding
eigenvalues are given in appendix A. A crucial step in our analysis is the use of the Lamé
function ansatz [4] generalized to a wider variety of interaction parameters for N CNLS
equations. While it is known that the N components of CNLS equations in which the interaction
parameters are equal and have the same sign have analytic solutions expressible in terms of
specific combinations of N Lamé functions of order n � N [5, 8], consideration of a wider
variety of interaction parameters [4] led us to the L-set which allows all possible combinations
of Lamé functions of order n � N as solutions, as we shall present in this paper.

The use of Lamé function ansatz described in [4] gives the solutions of equation (3) in
terms of Lamé functions in the form

ψm(t) = Cmf
(n)
p (t) (8)

where Cm is the (real) ‘amplitude’ of the mth component and f (n)p is one of the 2n + 1
Lamé functions of order n. The solution requires specific values for the cm of equation (3)
and thus κm of equation (4). An N-combination

(
f (n)p , f (n)q , . . . , f (n)s

)
that gives an analytic

solution for the N components (ψ1, ψ2, . . . , ψN)will be represented simply by (p, q, . . . , s)n,
where equation (6) implies p � q � · · · � s. We first renumber the 2n + 1 eigenvalues of the
Lamé equationh(n)1 , h

(n)

2 , . . . , h
(n)

2n+1, as h(n)1 , h
(n)

2 , h
(n)

2′ , . . . , h
(n)

n+1, h
(n)

(n+1)′ , and the corresponding

Lamé functions f (n)1 , f
(n)

2 , . . . , f
(n)

2n+1, as f (n)1 , f
(n)

2 , f
(n)

2′ , . . . , f
(n)

n+1, f
(n)

(n+1)′, i.e. we group them

in pairs except the first one. An N-combination
(
f (n)p , f (n)q , f

(n)
r ′ , . . . , f (n)s

)
, for example, will

be represented by (p, q, r ′, . . . , s)n, where p � q � r ′ � · · · � s.
To obtain the solutions of equation (3) using the Lamé function ansatz [4], we express the

square of the j th Lamé function of order n in a power series in s ≡ sn(τ, k) as

[
f
(n)
j (τ )

]2 =
n+1∑
i=1

a
(n)
ij s

2(i−1) j = 1, . . . , 2n + 1
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and assume that ψ1, . . . , ψN are expressible as ψ1(t) = C1f
(n)
p (αt), ψ2(t) = C2f

(n)
q

(αt), . . . , ψN(t) = CNf
(n)
s (αt). Substituting these into equation (3) and comparing them

with equation (7) give a set of algebraic equations that need to be satisfied. Solving the
equations gives the required values for the amplitudes C and the required values of c for
equation (3). Using the analytic expressions for the Lamé functions presented in appendix A
for N = 1–5, all possible analytic solutions of equation (3) can be obtained. As the coefficients
in the expansions for the Lamé functions in powers of s can be obtained by a recursive
procedure, the method can be efficiently applied numerically to any value of N.

Analytic solutions involving specific combinations for specific interaction types given
by (β1, β2, . . . , βN) = (+,+, . . . ,+), (+,−,+, . . . ,−) and (−,+,−, . . . ,−) are presented in
appendix B for the special case of N = n for N = 1–4. We have also grouped all possible
M = (2n+1

N

)
combinations of Lamé functions of order n = N that are solutions to the 2N

interaction types for N = 1–5 and present them in appendix C.
The main results of this paper concern the question of what combinations (of Lamé

functions) are applicable to what interaction types. Based on our above results for n � N , we
summarize the principal features and make the following assertions for a general N. We first
distinguish two separate cases of representing the solutions in terms of Lamé functions: case (I)
is in terms of Lamé functions of order n = N and case (II) in terms of Lamé functions of order
n < N . We have the following:

(I) For n = N , the N Lamé functions for the N components must necessarily be different
Lamé functions. The number of N combinations that can be chosen from 2n + 1 distinct
Lamé functions of order n = N , with no repetition allowed, is M = (2n+1

N

)
.

Every one of the M combination is a solution of one and only one particular interaction
type, and every interaction type has one or more combinations as solutions. More
specifically,

(A) combination (p1, p2 + 1, p3 + 2, . . . , pN + N − 1)n is a solution of interaction type
((−1)p1, (−1)p2 , (−1)p3, . . . , (−1)pN ), and

(B) an interaction type ((−1)p1, (−1)p2, (−1)p3 , . . . , (−1)pN ) has solutions given by all
possible combinations (m1,m2,m3, . . . ,mN)n, which can be obtained by setting
m1 = p1, m2 = p2 + 1,m3 = p3 + 2, . . . ,mN = pN + N − 1, and by increasing or
decreasing mj by any multiple of 2 subject to the condition that m1 < m2 < m3 <

· · · < mN , where mj can take on values 1, 2, 2′, 3, 3′, . . . , n + 1, (n + 1)′ with the
understanding that r < r ′.

Using this rule, the grouping of the M = (2n+1
N

)
combinations for the 2N interaction

types for the L-set for N = 1–5, which are explicitly shown in appendix C can be verified.
Note that every one of the M possible combinations is accounted for and appears in the
list for each N only once, i.e. every combination is a solution of one interaction type of
the L-set. It can be seen from the rule given above the following special cases:

(a) The interaction type (− − − · · ·−) allows 2N−1 combinations as solutions given by
(1, 2, 3, . . . , N)n and those in which one or more of the N − 1 numbers 2, 3, . . . , N
are replaced by 2′, 3′, . . . , N ′;

(b) The interaction type (+ + + · · · +) allows 2N combinations as solutions given by
(2, 3, . . . , N + 1)n and those in which one or more of the N numbers 2, 3, . . . , N + 1
are replaced by 2′, 3′, . . . , (N + 1)′;

(c) For N even, the interaction type (+ − + − · · · + −) allows only one combination
(22′44′ · · ·NN ′)n as solution; and the interaction type (− + − + · · ·− +) allowsN + 1
combinations as solutions given by (3, 3′, 5, 5′, . . . N + 1, (N + 1)′)n and N other
combinations obtained by replacing one of the N numbers by 1.
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(d) For N odd, the interaction type (− + − + · · · −) allows only one combination
(133′55′ · · ·NN ′)n as solution; and the interaction type (+ − + − · · · +) allows N + 1
combinations as solutions obtained from choosing N numbers from theN +1 numbers
2, 2′, 4, 4′, . . . , N + 1, (N + 1)′.

(II) For n < N , two or more of the Lamé functions for the N components may be the same
function. The number of N combinations that can be chosen from 2n + 1 distinct Lamé
functions of order n < N each of which may appear from 0 to N times is M ′ = (2n+1

N

)
.

A total of M ′ combinations (m1,m2, . . . ,mN)n are possible where m1 � m2 � m3 �
· · · � mN can be chosen, with repetition allowed, from 1, 2, 2′, 3, 3′, . . . , n + 1, (n + 1)′,
and in general, these combinations, with a few exceptions, are possible solutions for each
of the 2N interaction types. By studying the equations derived from the Lamé function
ansatz and the forms of Lamé functions, we find the following general restrictions:

(A) a combination (m1,m2, . . . ,mN)n must have at least n distinct m for it to be a
solution; and

(B) combination (m1,m2, . . . ,mN)n is disallowed for interaction type
((−1)m1+n, (−1)m2+n, . . . , (−1)mN+n).

Unlike the case for n = N for which the C and c must be specific values (see
appendix B) for a combination to be a solution, for the case n < N , there can be one or
more ‘relatively’ free parameter (which may be subject to a certain constraint) on which
the C and c depend.

We present the disallowed combinations from the above rules (A) and (B) for N = 2,
n = 1, and for N = 3, n = 1 and 2, as examples, in appendix D, as those for higher
values of N can be easily written.

There are, however, other restrictions specific to certain kinds of combinations and
interaction types. Some of these restrictions are quite apparent when we discuss the
degenerate combinations in the next section for which an example is given in appendix E.

4. Degenerate and degenerative combinations

For the case of N > n for which combinations with repetitions are allowed, we shall refer
to a combination in which two or more of the m in the combination (m1,m2, . . . ,mN)n are
equal as a degenerate combination, and one in which all the m are distinct as a non-degenerate
combination. For a degenerate combination, if we replace all the equal m by a single member,
then we get what we shall call the corresponding ‘contracted’ (non-degenerate) combination.
Using the Lamé function ansatz given in [4], it is easy to show that the amplitudes Cm for ψm
and the required cm for equation (3) for a degenerate combination can be obtained from the
corresponding quantities for the corresponding contracted (and non-degenerate) combination
involving N ′ distinct Lamé functions of order n. A simple rule for doing this is illustrated in
appendix E.

For the case of n = N , all combinations must be non-degenerate (for 0 < k2 < 1) to
be solutions of N CNLS equations (4). It is useful to divide the M = (2n+1

N

)
combinations

of Lamé functions that can be obtained from 2n + 1 Lamé functions of order n (with no
repetition allowed) into two kinds: the degenerative combination is one in which at least two
of the m in the combination (m1,m2, . . . ,mN)n involve a pair p and p′, where p is one of the
numbers from 2 to n + 1; the non-degenerative combination is one that is not degenerative.
It can be shown that of the M combinations, the number of degenerative combinations is
Md = n(2n− 1)!/{(N − 2)!(2n−N + 1)!} and the number of non-degenerative combinations
is Mnd = M −Md .
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We also divide the 2N interaction types into two kinds: the kind in which all the – precede
the + will be called the ‘weakly’ mixed type, which includes the ‘pure’ type in which the signs
are all − or all +; the other kind in which the − appear before and after the + will be called
the ‘strongly’ mixed type.

We find that the non-degenerative combinations are solutions of only the weakly mixed
interaction type. The degenerative combinations can be solutions of the strongly mixed as
well as the weakly mixed interaction types except the pure type. Division into degenerative
and non-degenerative combinations aside, we again point out that every one of the M possible
combinations (for n = N) of Lamé functions is a solution to one of the 2N interaction types.

The division of combinations into degenerative and non-degenerative is consistent with
consideration of Lamé functions as k2 becomes equal to 1. In that case, the 2n+ 1 eigenvalues,
except for the first one, become pairwise degenerate, i.e. h(n)2 = h

(n)
2′ , h

(n)
3 = h

(n)
3′ , . . . , h

(n)

(n+1) =
h
(n)

(n+1)′, and the corresponding Lamé functions of order n become n + 1 associated Legendre
functions Pmn (x),m = 0, 1, 2, . . . , n, where x = tanh(αt) using α and t used in appendix B.

We now consider the N + 1 weakly mixed interaction types and the corresponding solutions
given by the non-degenerative combinations for the special case k2 = 1. In this case, we find
that the solutions, including the amplitudes Cm for equation (8) and the corresponding cm
required for equation (3) can be written in a compact form.

We first define our normalized associated Legendre functions Pmn (x) as follows:

Pmn (x) = (1 − x2)m/2 dmPn(x)/dxm

where Pn(x) = (2−n/n!) dn(x2 − 1)n/dxn.
To express our results in a compact way, we consider (N + 1) CNLS equations involving

ψj , j = 1, 2, . . . , N + 1 with j = r missing (or ψr = 0), where r can be any one of the N + 1
components. Written explicitly, we have the following N dynamical CNLS equations:

ψmtt + cmψm +

(
r−1∑
j=1

−ψ2
j +

N+1∑
j=r+1

ψ2
j

)
ψm = 0 m = 1, . . . , N + 1. (9)

We find the analytic solutions ψj with amplitudes Cj and the required cj given by

ψj = CjP
j−1
N (tanhαt) j = 1, . . . , N + 1 j �= r

C1 = [2(r − 1)2]1/2α
(10)

Cj = {4[(N − j + 1)!]|(r − 1)2 − (j − 1)2|/(N + j − 1)!}1/2α

cj = [2(r − 1)2 − (j − 1)2]α2 j = 1, . . . , N + 1 j �= r

where the specification j �= r is not really necessary since setting j = r would give Cj and
cj equal to zero anyway. However, the specification j �= r is a reminder that there are N and
not N + 1 coupled components of CNLS equations considered.

It can be checked that for r = 1, i.e. when the nonlinear coupling parameters in
equation (9) are all equal to +1, the above results coincide with those given previously in
[4, 5], and for r = N + 1, i.e. when the nonlinear coupling parameters are all equal to −1,
the above results coincide with those given previously in [4]. Thus our above results given by
equation (9) generalize the previous results to the weakly mixed cases where the first r − 1 of
the β in equation (3) are equal to −1, and the remaining β are equal to +1. It may be noted
that the ‘generalized’ dark solitary wave is P 0

n (tanhαt) and the ‘generalized’ bright solitary
wave is Pnn (tanhαt); they become the familiar dark solitary wave tanhαt and the familiar
bright solitary wave sech αt , respectively, for n = 1. The generalized dark solitary waves
P 0
n (tanhαt), unlike the rest of the set Pmn (tanhαt),m = 1, . . . , n, do not become zero when
t → ±∞.
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5. Comparison with P-test characterization

As mentioned in the introduction, it is significant that our L-set defined in section 2 coincides
with the set of CNLS equations that pass the Painlevé test identified by Radhakrishnan
et al [6]. While the 2N−1 specific parameter restrictions given by Radhakrishnan et al [6]
(see their equations (61a)–(61n + 1)) appear to be somewhat complicated compared to our
characterization, it is instructive and suffices for our purpose to compare their and our
characterizations for N = 3 explicitly. Using equation (4) and choosing the upper sign (there
is no new physics if the lower sign is chosen) as our L-set for the general CNLS equations (1)
means that our L-set is characterized by the column vector (ε1, ε2, ε3) = (β1, β2, β3) and the
3 × 3 matrix λmj = βmβj , m, j = 1, 2, 3, βj = +1 or −1. It gives 2N = 8 interaction types,
each with a column vector (ε1, ε2, ε3) and the corresponding matrix [λmj ] as follows (we shall
write + for +1 and − for −1 for convenience):

N = 3 c1 > c2 > c3

(1)


−

−
−





+ + +

+ + +
+ + +


 (2)


−

−
+





+ + −

+ + −
− − +




(3)


−

+
−





+ − +

− + −
+ − +


 (4)


−

+
+





+ − −

− + +
− + +




(5)


+

−
−





+ − −

− + +
− + +


 (6)


+

−
+





+ − +

− + −
+ − +




(7)


+

+
−





+ + −

+ + −
− − +


 (8)


+

+
+





+ + +

+ + +
+ + +


 .

It is seen that (1) and (8), (2) and (7), (3) and (6), (4) and (5) are related by reversing
the signs of the column vector (ε1, ε2, ε3) but having the same matrix [λmj ], and the pair
is counted as one in the characterization given by Radhakrishnan et al, and thus giving
2N−1 = 4 parametric restrictions that pass the P-test, as can be verified using the scheme
of characterization given by them. Thus their and our characterizations give the same set of
CNLS equations: theirs for the set that passes the P-test, and ours for the set that possesses
the Lamé functions as analytic solutions. However, our characterization of the set not only is
much simpler to state and remember, but also separates out different solution types.

6. Summary

We have presented the following assertions and results for N CNLS equations belonging to
the L-set, i.e. for the special set of N CNLS equations given by equation (4):

(1) that every one of the M possible N combinations of distinct Lamé functions of order
n = N is a solution of one, and only one, of the 2N interaction types;

(2) that every one of the M ′ possible N combinations of Lamé functions of order n < N in
which the same Lamé function may represent more than one component, is a solution of
one or more of the 2N interaction types;

(3) rules for identifying combinations with interaction types and for disallowed combinations;
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(4) the relationship between degenerative, non-degenerative combinations and strongly and
weakly mixed interaction types; and

(5) a compact general analytic expression for the N components ψj corresponding to the
weakly mixed interaction types for the case k2 = 1.

This special set of N CNLS equations coincides with the set of CNLS equations that pass
the Painlevé test [6] even though the characterization of parameters was done differently in [6].
It can be seen by comparison, however, that our characterization of the interaction parameters
is simpler, and that our characterization of the solution types gives a greater clarification to
the nature of the interaction parameters.

As a consequence of this characterization, physical applications of our results are more
apparent. In particular, (a) our results provide the analytic forms of solitary waves that can be
made into partners (i.e. combination of Lamé functions) in order to propagate unattenuated
through a medium of certain characteristics (i.e. interaction type such as a normal or an
anomalous group-velocity dispersion region [1]) which each wave may not be able to do
individually, and (b) as presented in a recent communication [9], some of our results provide the
analytic forms of stationary distributions of coupled Bose–Einstein condensates and suggest
possible ways of making them overlap each other (i.e. same Lamé functions appearing in
the combination) or separated (i.e. different Lamé functions in the combination). Physical
applications of our results for the mixed interaction types, which make up the L-set and are
clearly important mathematically, still await us, and we believe, will come in the very near
future and are potentially wide ranging.
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Appendix A

The 2n + 1 Lamé functions f (n)m (τ ) and their eigenvalues h(n)m satisfy the Lamé equations (7),
and we list them according to the subscriptm = 1, 2, 2′, 3, 3′, . . . , n + 1, (n + 1)′ described in
section 3, for n = 1–5, in this appendix.

• n = 1

h1 = 1 + k2 h2 = 1 h2′ = k2

f1 = sn(τ ) f2 = cn(τ ) f2′ = dn(τ ).

• n = 2

h1,3′ = 2(1 + k2)± 2
√

1 − k2 + k4

h2 = 4 + k2

h2′ = 1 + 4k2

h3 = 1 + k2

f1,3′ = 1 − {
1 + k2 ±

√
1 − k2 + k4

}
sn2(τ )

f2 = sn(τ ) cn(τ )

f2′ = sn(τ ) dn(τ )

f3 = cn(τ ) dn(τ ).
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• n = 3

h1,3′ = 5(1 + k2)± 2
√

4 − 7k2 + 4k4

h2,4 = 5 + 2k2 ± 2
√

4 − k2 + k4

h2′,4′ = 2 + 5k2 ± 2
√

1 − k2 + 4k4

h3 = 4(1 + k2)

f1,3′ = sn(τ )
{

1 − 1
3

[
2 + 2k2 ±

√
4 − 7k2 + 4k4

]
sn2(τ )

}
f2,4 = cn(τ )

{
1 − [

2 + k2 ±
√

4 − k2 + k4
]

sn2(τ )
}

f2′,4′ = dn(τ )
{

1 − [
1 + 2k2 ±

√
1 − k2 + 4k4

]
sn2(τ )

}
f3 = sn(τ ) cn(τ ) dn(τ ).

• n = 4
For j = 1, 3′, 5′

hj = 20

3
(1 + k2) +

8
√

13

3

√
1 − k2 + k4 cos

ϑj

3
where ϑ1 = ϑ, ϑ3′ = ϑ + 4π, ϑ5′ = ϑ + 2π and

cosϑ = 35

26
√

13

(1 + k2)(1 − 2k2)(2 − k2)√
(1 − k2 + k4)3

h2,4 = 5(2 + k2)± 2
√

9 − 9k2 + 4k4

h2′,4′ = 5(1 + 2k2)± 2
√

4 − 9k2 + 9k4

h3,5 = 5(1 + k2)± 2
√

4 + k2 + 4k4

fj = 1 − hj

2
sn2(τ ) +

[
5

3
k2 − 1

6
(1 + k2)hj +

1

24
h2
j

]
sn4(τ ) for j = 1, 3′, 5′

f2,4 = sn(τ ) cn(τ )

{
1 − 1

3

[
3 + 2k2 ±

√
9 − 9k2 + 4k4

]
sn2(τ )

}

f2′,4′ = sn(τ ) dn(τ )

{
1 − 1

3

[
2 + 3k2 ±

√
4 − 9k2 + 9k4

]
sn2(τ )

}

f3,5 = cn(τ ) dn(τ )
{

1 − [
2 + 2k2 ±

√
4 + k2 + 4k4

]
sn2(τ )

}
.

• n = 5
For j = 1, 3′, 5′

hj = 35(1 + k2)

3
+

8

3

√
28 − 43k2 + 28k4 cos

ϑj

3
ϑ3′ = ϑ1 + 4π ϑ5′ = ϑ1 + 2π

for j = 2, 4, 6

hj = 5(7 + 4k2)

3
+

8

3

√
28 − 13k2 + 13k4 cos

ϑj

3
ϑ4 = ϑ2 + 4π ϑ6 = ϑ2 + 2π

for j = 2′, 4′, 6′

hj = 5(4 + 7k2)

3
+

8

3

√
13 − 13k2 + 28k4 cos

ϑj

3
ϑ4′ = ϑ2′ + 4π ϑ6′ = ϑ2′ + 2π

h3 = 10(1 + k2) + 6
√

1 − k2 + k4

h5 = 10(1 + k2)− 6
√

1 − k2 + k4
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where

cosϑ1 = 5(32 − 39k2 − 39k4 + 32k6)

2
√
(28 − 43k2 + 28k4)3

cosϑ2 = 5(32 − 57k2 − 21k4 + 14k6)

2
√
(28 − 13k2 + 13k4)3

cosϑ2′ = 5(14 − 21k2 − 57k4 + 32k6)

2
√
(13 − 13k2 + 28k4)3

fj = f (τ){1 − aj sn2(τ ) + bj sn4(τ )}
where for j = 1, 3′, 5′

f (τ) = sn(τ ) aj = 1
6 {hj − (1 + k2)}

bj = 1
5

{
7k2 + 3

8 (1 + k2)
}− 1

12 (1 + k2)hj + 1
120h

2
j

for j = 2, 4, 6

f (τ) = cn(τ ) aj = 1
2 (hj − 1) bj = 1

8 (3 + 20k2)− 1
12 (5 + 2k2)hj + 1

24h
2
j

for j = 2′, 4′, 6′

f (τ) = dn(τ ) aj = 1
2 (hj − k2) bj = 1

8k
2(20 + 3k2)− 1

12 (2 + 5k2)hj + 1
24h

2
j

for j = 3, 5

f (τ) = sn(τ ) cn(τ ) dn(τ ) aj = 1
6 {hj − 4(1 + k2)} bj = 0.

Appendix B

In this appendix, we present specific analytic solutions of equation (3) involving specific
combinations for interaction type (+ + + · · · +), (− + − · · ·−) and (+ − + − · · ·−) for N = 1–4
and n = N . These combinations are not the only ones possible for the given interaction types,
as can be seen from appendix C, but they have the special feature of having the sn function
(or the cn function which can be transformed into a constant multiple of sn/dn by displacing
the argument by a quarter period) as a factor in every component. These special solutions are
useful for the study of coupled Gross–Pitaevskii equations [8].

• N = 1

(i) Combination (1)1 for interaction type (−).
ψ1(t) = C1 sn(αt)

where C1 = √
2kα, c1 = (1 + k2)α2.

(ii) Combination (2)1 for interaction type (+).

ψ1(t) = C1 cn(αt)

where C1 = √
2kα, c1 = (1 − 2k2)α2.

• N = 2

(i) Combination (2, 2′)2 for interaction type (+−).
ψ1(t) = C1 sn(αt) cn(αt) ψ2(t) = C2 sn(αt) dn(αt)

where

C1 =
√

6k2k′−1α C2 =
√

6kk′−1α c1 = (4 + k2)α2 c2 = (1 + 4k2)α2.
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(ii) Combination (2, 3)2 for interaction type (++).

ψ1(t) = C1 sn(αt) cn(αt) ψ2(t) = C2 cn(αt) dn(αt)

where

C1 =
√

6k2α C2 =
√

6kα c1 = (4 − 5k2)α2 c2 = (1 − 5k2)α2.

• N = 3

(i) Combination (1, 3, 3′)3 for interaction type (− + −).
ψ1,3(t) = C1,3 sn(αt){1 − a1,3′ sn2(αt)} ψ2(t) = C2 sn(αt) cn(αt) dn(αt)

where

a1,3′ = 1
3

[
2 + 2k2 ±

√
4 − 7k2 + 4k4

]
C1,3 =

√
3k′−2kα

(
2 + k2 + 2k4 ∓ (1 + k2)(8 − 11k2 + 8k4)

2
√

4 − 7k2 + 4k4

)1/2

C2 =
√

30k′−2kα

c1,3 = {
5(1 + k2)± 2

√
4 − 7k2 + 4k4

}
α2 c2 = 4(1 + k2)α2.

(ii) Combination (2, 3, 4)3 for interaction type (+ + +).

ψ1,3(t) = C1,3 cn(αt){1 − a2,4 sn2(αt)} ψ2(t) = C2 sn(αt) cn(αt) dn(αt)

where

a2,4 = 2 + k2 ±
√

4 − k2 + k4

C1,3 =
√

3kα

(
2 ∓ 8 − k2

2
√

4 − k2 + k4

)1/2

C2 =
√

30k2α

c1,3 = {
5(1 − 2k2)± 2

√
4 − k2 + k4

}
α2 c2 = 4(1 − 2k2)α2.

• N = 4

(i) Combination (2, 2′, 4, 4′)4 for interaction type (+−+−).

ψ1,3(t) = C1,3 sn(αt) cn(αt){1 − b2,4 sn2(αt)}
ψ2,4(t) = C2,4 sn(αt) dn(αt){1 − b2′,4′ sn2(αt)}

where

b2,4 = 1
3

[
3 + 2k2 ±

√
9 − 9k2 + 4k4

]
b2′,4′ = 1

3

[
2 + 3k2 ±

√
4 − 9k2 + 9k4

]
C1,3 =

√
5k′−3k2α

(
9 + 3k2 + 2k4 ∓ 54 − 9k2 + 3k4 + 8k6

2
√

9 − 9k2 + 4k4

)1/2

C2,4 =
√

5k′−3kα

(
2 + 3k2 + 9k4 ∓ 8 + 3k2 − 9k4 + 54k6

2
√

4 − 9k2 + 9k4

)1/2

c1,3 = {
5(2 + k2)± 2

√
9 − 9k2 + 4k4

}
α2

c2,4 = {
5(1 + 2k2)± 2

√
4 − 9k2 + 9k4

}
α2.

(ii) Combination (2, 3, 4, 5)4 for interaction type (+ + + +).

ψ1,3(t) = C1,3 sn(αt) cn(αt){1 − b2,4 sn2(αt)}
ψ2,4(t) = C2,4 cn(αt) dn(αt){1 − b3,5 sn2(αt)}

where

b3,5 = 2 + 2k2 ±
√

4 + k2 + 4k4

C1,3 = 3
√

5k2α

(
1 ∓ 3(2 − k2)

2
√

9 − 9k2 + 4k4

)1/2
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C2,4 =
√

5kα

(
2 ∓ 8 + k2

2
√

4 + k2 + 4k4

)1/2

c1,3 = {
5(2 − 3k2)± 2

√
9 − 9k2 + 4k4

}
α2

c2,4 = {
5(1 − 3k2)± 2

√
4 + k2 + 4k4

}
α2.

Appendix C

A collection of N Lamé functions
(
f (n)m1

, f (n)m2
, . . . , f (n)mN

)
or (m1,m2, . . . ,mN)n chosen from

2n+ 1 Lamé functionsf(n)m of order n that can serve as an analytic solution for the N components
ψm,m = 1, . . . , N, of equation (3) will be referred to as a combination. In this appendix, we
list, for every one of the 2N possible interaction types (β1, β2, . . . , βN),where βj can be +1 or
−1, for equation (3), all the possible combinations for Lamé functions of order n = N , for N =
1–5 (the subscript n in the combination (m1,m2, . . . ,mN)n is dropped as it is understood that
n = N . The total number M of possible combinations for N = 1, 2, 3, 4, 5 are 3, 10, 35, 126
and 462 respectively. These groupings, which have been checked analytically up to N = 4,
and numerically up toN = 5, confirm rules (I) given in section 3. To obtain the corresponding
amplitudesCj and the appropriate cm for equation (3) for each allowed combination, we need
simply to substitute ψj = Cjf

(n)
mj

into the equations, using the f (n)m given in appendix A, and
solve a set of simultaneous algebraic equations as prescribed in [4].

We list only the ‘principal’ combinations with the number of total possible combinations
that can be obtained from them by changing, say, 2 to 2′, 3 to 3′, etc, given in
the square parentheses that follow, remembering the restriction that for any combination
(m1,m2, . . . ,mN)n for the case n = N,m1 < m2 < · · · < mN. For example, (2)[2]
represents two combinations (2)1 and (2′)1, and (1, 2, 3, 4, 4′)[4] represents four combinations
(1, 2, 3, 4, 4′)5, (1, 2, 3′, 4, 4′)5, (1, 2′, 3, 4, 4′)5 and (1, 2′, 3′, 4, 4′)5.

Interaction type Combination

N = 1
(−) (1)[1]
(+) (2)[2]

N = 2
(−−) (1, 2)[2]
(−+) (1, 3)[2], (3, 3′)[1]
(+−) (2, 2′)[1]
(++) (2, 3)[4]

N = 3
(− − −) (1, 2, 3)[4]
(− − +) (1, 2, 2′)[1], (1, 2, 4)[4], (1, 4, 4′)[1], (3, 4, 4′)[2]
(− + −) (1, 3, 3′)[1]
(− + +) (1, 3, 4)[4], (3, 3′, 4)[2]
(+ − −) (2, 2′, 3)[2]
(+ − +) (2, 2′, 4)[2], (2, 4, 4′)[2]
(+ + −) (2, 3, 3′)[2]
(+ + +) (2, 3, 4)[8]
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N = 4
(− − −−) (1, 2, 3, 4)[8]
(− − −+) (1, 2, 3, 3′)[2], (1, 2, 3, 5)[8], (1, 2, 5, 5′)[2], (1, 4, 5, 5′)[2],

(3, 4, 5, 5′)[4]
(− − +−) (1, 2, 2′, 4)[2], (1, 2, 4, 4′)[2]
(− − ++) (1, 2, 2′, 3)[2], (1, 2, 2′, 5)[2], (1, 2, 4, 5)[8], (1, 4, 4′, 5)[2],

(3, 4, 4′, 5)[4]
(− + −−) (1, 3, 3′, 4)[2]
(− + −+) (1, 3, 3′, 5)[2], (1, 3, 5, 5′)[2], (3, 3′, 5, 5′)[1]
(− + +−) (1, 3, 4, 4′)[2], (3, 3′, 4, 4′)[1]
(− + ++) (1, 3, 4, 5)[8], (3, 3′, 4, 5)[4]
(+ − −−) (2, 2′, 3, 4)[4]
(+ − −+) (2, 2′, 3, 3′)[1], (2, 2′, 3, 5)[4], (2, 2′, 5, 5′)[1], (2, 4, 5, 5′)[4],

(4, 4′, 5, 5′)[1]
(+ − +−) (2, 2′, 4, 4′)[1]
(+ − ++) (2, 2′, 4, 5)[4], (2, 4, 4′, 5)[4]
(+ + −−) (2, 3, 3′, 4)[4],
(+ + −+) (2, 3, 3′, 5)[4], (2, 3, 5, 5′)[4]
(+ + +−) (2, 3, 4, 4′)[4]
(+ + ++) (2, 3, 4, 5)[16]

N = 5
(− − − − −) (1, 2, 3, 4, 5)[16]

(− − − − +) (1, 2, 3, 4, 4′)[4], (1, 2, 3, 4, 6)[16], (1, 2, 3, 6, 6′)[4],

(1, 2, 5, 6, 6′)[4], (1, 4, 5, 6, 6′)[4], (3, 4, 5, 6, 6′)[8]

(− − − + −) (1, 2, 3, 3′, 5)[4], (1, 2, 3, 5, 5′)[4]

(− − − + +) (1, 2, 3, 3′, 4)[4], (1, 2, 3, 3′, 6)[4], (1, 2, 3, 5, 6)[16],

(1, 2, 5, 5′, 6)[4], (1, 4, 5, 5′, 6)[4], (3, 4, 5, 5′, 6)[8]
(− − + − −) (1, 2, 2′, 4, 5)[4], (1, 2, 4, 4′, 5)[4]
(− − + − +) (1, 2, 2′, 4, 4′)[1], (1, 2, 2′, 4, 6)[4], (1, 2, 2′, 6, 6′)[1],

(1, 2, 4, 4′, 6)[4], (1, 2, 4, 6, 6′)[4], (1, 4, 4′, 6, 6′)[1],
(3, 4, 4′, 6, 6′)[2]

(− − + + −) (1, 2, 2′, 3, 3′)[1], (1, 2, 2′, 3, 5)[4], (1, 2, 2′, 5, 5′)[1],
(1, 2, 4, 5, 5′)[4], (1, 4, 4′, 5, 5′)[1], (3, 4, 4′, 5, 5′)[2]

(− − + + +) (1, 2, 2′, 3, 4)[4], (1, 2, 2′, 3, 6)[4], (1, 2, 2′, 5, 6)[4],
(1, 2, 4, 5, 6)[16], (1, 4, 4′, 5, 6)[4], (3, 4, 4′, 5, 6)[8]

(− + − − −) (1, 3, 3′, 4, 5)[4]
(− + − − +) (1, 3, 3′, 4, 4′)[1], (1, 3, 3′, 4, 6)[4], (1, 3, 3′, 6, 6′)[1],

(1, 3, 5, 6, 6′)[4], (1, 5, 5′, 6, 6′)[1], (3, 5, 5′, 6, 6′)[2],
(3, 3′, 5, 6, 6′)[2]

(− + − + −) (1, 3, 3′, 5, 5′)[1]
(− + − + +) (1, 3, 3′, 5, 6)[4], (1, 3, 5, 5′, 6)[4], (3, 3′, 5, 5′, 6)[2]
(− + + − −) (1, 3, 4, 4′, 5)[4], (3, 3′, 4, 4′, 5)[2]
(− + + − +) (1, 3, 4, 4′, 6)[4], (1, 3, 4, 6, 6′)[4], (3, 3′, 4, 4′, 6)[2],

(3, 3′, 4, 6, 6′)[2]
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(− + + + −) (1, 3, 4, 5, 5′)[4], (3, 3′, 4, 5, 5′)[2]
(− + + + +) (1, 3, 4, 5, 6)[16], (3, 3′, 4, 5, 6)[8]
(+ − − − −) (2, 2′, 3, 4, 5)[8]
(+ − − − +) (2, 2′, 3, 4, 4′)[2], (2, 2′, 3, 4, 6)[8], (2, 2′, 3, 6, 6′)[2],

(2, 2′, 5, 6, 6′)[2], (2, 4, 5, 6, 6′)[8], (4, 4′, 5, 6, 6′)[2]
(+ − − + −) (2, 2′, 3, 3′, 5)[2], (2, 2′, 3, 5, 5′)[2]
(+ − − + +) (2, 2′, 3, 3′, 4)[2], (2, 2′, 3, 3′, 6)[2], (2, 2′, 3, 5, 6)[8],

(2, 2′, 5, 5′, 6)[2], (2, 4, 5, 5′, 6)[8], (4, 4′, 5, 5′, 6)[2]
(+ − + − −) (2, 2′, 4, 4′, 5)[2]
(+ − + − +) (2, 2′, 4, 4′, 6)[2], (2, 2′, 4, 6, 6′)[2], (2, 4, 4′, 6, 6′)[2]
(+ − + + −) (2, 2′, 4, 5, 5′)[2], (2, 4, 4′, 5, 5′)[2]
(+ − + + +) (2, 2′, 4, 5, 6)[8], (2, 4, 4′, 5, 6)[8]
(+ + − − −) (2, 3, 3′, 4, 5)[8]
(+ + − − +) (2, 3, 3′, 4, 4′)[2], (2, 3, 3′, 4, 6)[8], (2, 3, 3′, 6, 6′)[2],

(2, 3, 5, 6, 6′)[8], (2, 5, 5′, 6, 6′)[2], (4, 5, 5′, 6, 6′)[2]
(+ + − + −) (2, 3, 3′, 5, 5′)[2]
(+ + − + +) (2, 3, 3′, 5, 6)[8], (2, 3, 5, 5′, 6)[8]
(+ + + − −) (2, 3, 4, 4′, 5)[8]
(+ + + − +) (2, 3, 4, 4′, 6)[8], (2, 3, 4, 6, 6′)[8]
(+ + + + −) (2, 3, 4, 5, 5′)[8]
(+ + + + +) (2, 3, 4, 5, 6)[32]

Appendix D

In this appendix, we give specific examples of rule (II) given in section 3 for the disallowed
combinations of Lamé functions of order n < N for N CNLS equations, for N = 2 and 3
only, as those for higher values of N can be obtained using rule (II) without too much trouble.
The numbers given in the square brackets have the same meaning as those in appendix C,
remembering, however, that in the case of n < N , some or all of the m in any combination
(m1,m2, . . . ,mN)n can be equal, with the restriction only that m1 � m2 � · · · � mN. For
example, (2, 2)1[3] represents three combinations (2, 2)1, (2, 2′)1, (2′, 2′)1, and (1, 2, 3)2[4]
represents four combinations (1, 2, 3)2, (1, 2, 3′)2, (1, 2′, 3)2, (1, 2′, 3′)2.

Interaction type Disallowed combination

N = 2
(−−) (2, 2)1[3]
(−+) None

(+−) (1, 2)1[2]
(++) (1, 1)1[1]

N = 3
(− − −) (2, 2, 2)1[4], (1, 1, 1)2[1], (1, 1, 3)2[2], (1, 3, 3)2[3], (3, 3, 3)2[4]
(− − +) (1, 1, 2)2[2]
(− + −) (1, 2, 3)2[4]
(− + +) (1, 2, 2)2[3]
(+ − −) (1, 2, 2)1[3], (2, 3, 3)2[6]
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(+ − +) None

(+ + −) (1, 1, 2)1[2], (2, 2, 3)2[6]
(+ + +) (1, 1, 1)1[1], (2, 2, 2)2[4].

Appendix E

In this appendix, we illustrate how the Cm and cm for equations (3) and (8) for a solution
given by a degenerate combination (m1, . . . ,mN)n in which some of the m are equal, can
be expressed in terms of the corresponding values of the solution given by the contracted
(non-degenerate) combination.

Consider the case in which only two of the m, say, mp = mp+1 in

(m1, . . . ,mp,mp+1, . . . ,mN)n n < N (E.1)

as the generalization will become obvious. We exclude mp+1 and consider the contracted
non-degenerate combination

(m1, . . . ,mp, . . . ,mN)n (E.2)

involvingN ′ (=N − 1 for this example) distinct Lamé functions of order n.
Suppose that we want the Cm and cm for an allowed combination (E.1). Let the C and c

for the combination (E.2) for the interaction type

((−1)s1, . . . , (−1)s
′
p , (−1)sp+2, . . . , (−1)sN ) (E.3)

be given by C(n)j and c(n)j , j = 1, . . . , N ′. Then the Cm and cm for combination (E.1) for
interaction type ((−1)s1, . . . , (−1)sp , (−1)sp+1 , (−1)sp+2, . . . , (−1)sN ) are given by

for j = 1, . . . , p − 1 Cj = C
(n)
j cj = c

(n)
j

for j = p + 2, . . . , N Cj = C
(n)

j−1 cj = c
(n)

j−1

and for j = p and j = p + 1

(−1)sp(−1)mp(Cp)2 + (−1)sp+1(−1)mp (Cp+1)
2 = (

C(n)p
)2

(E.4)
cp = cp+1 = c(n)p

where sp and sp+1 can be arbitrary so long as (E.4) holds.
We give the following example of a degenerate combination for N = 4, n = 2, for

which we want to find the appropriate c and C for equations (3) and (8) for this degenerate
combination to be a solution for certain interaction types, using the c andC given in appendix B
for the corresponding contracted non-degenerate combination and the formulae given above.
We write the various c and C for various n in appendix B as c(n) and C(n).

Combination (2, 2, 2, 2′)2 for interaction type (β1, β2, β3,−). The requiredC and c are given
in terms of C(2)1 , C(2)2 and c(2)1 , c(2)2 for the contracted non-degenerate combination (2, 2′)2 for
interaction type (+−) given in appendix B by

β1C
2
1 + β2C

2
2 + β3C

2
3 = {

C
(2)
1

}2
C4 = C

(2)
2

c1 = c2 = c3 = c
(2)
1 c4 = c

(2)
2

from which we see thatC1, C2 andC3 can be arbitrary but must satisfy the equation given above,
and that β1, β2 and β3 can take on +1 or −1 but have to exclude the case β1 = β2 = β3 = −1.
Thus interaction type (− − −−) is disallowed. In addition, from Section 3(II)(B), interaction
type (+ + + +) is disallowed for this combination.
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[7] See e.g. Erdélyi A et al (ed) 1955 Higher Transcendental Functions vol 3 (New York: McGraw-Hill) ch 15
[8] Florjanczyk M and Tremblay R 1989 Phys. Lett. A 141 34

Kostov N A and Uzunov I M 1992 Opt. Commun. 89 389
Hioe F T 1998 Phys. Rev. E 58 1174 6700
Chow K W 2001 Phys. Lett. A 285 319

[9] Hioe F T and Carroll C E 2002 Phys. Lett. A 299 189


